TargetMol

PtdIns-(3,4,5)-P3 (1,2-dihexanoyl) (ammonium salt)

Product Code:
 
TAR-T36939
Product Group:
 
Inhibitors and Activators
Supplier:
 
TargetMol
Regulatory Status:
 
RUO
Shipping:
 
cool pack
Storage:
 
-20℃
1 / 1

No additional charges, what you see is what you pay! *

CodeSizePrice
TAR-T36939-1mg1mg£1,347.00
Special offer! Add £1 to your order to get a TargetMol CCK-8 Kit. Read more here.
Quantity:
Prices exclude any Taxes / VAT
Stay in control of your spending. These prices have no additional charges, not even shipping!
* Rare exceptions are clearly labelled (only 0.14% of items!).
Multibuy discounts available! Contact us to find what you can save.
This product comes from: United States.
Typical lead time: 10-14 working days.
Contact us for more accurate information.
  • Further Information
  • Documents
  • Show All

Further Information

Bioactivity:
The phosphatidylinositol (PtdIns) phosphates represent a small percentage of total membrane phospholipids. However, they play a critical role in the generation and transmission of cellular signals. PtdIns-(3,4,5)-P3, also known as PIP3, is resistant to cleavage by PI-specific phospholipase C (PLC). Thus, it is likely to function in signal transduction as a modulator in its own right, rather than as a source of inositol tetraphosphates. PIP3 can serve as an anchor for the binding of signal transduction proteins bearing pleckstrin homology (PH) domains. Protein binding to PIP3 is important for cytoskeletal rearrangement and membrane trafficking. PtdIns-(3,4,5)-P3 (1,2-dihexanoyl) is a synthetic analog of natural PIP3 with C6:0 fatty acids at the sn-1 and sn-2 positions. The compound features the same inositol and diacylglycerol (DAG) stereochemistry as that of the natural compound. The short fatty acid chains of this analog give it different physical properties from naturally-occurring PIP3, including higher solubility in aqueous media.
CAS:
799268-62-5
Formula:
C21H54N4O22P4?4NH4
Molecular Weight:
838.6
Purity:
0.98
SMILES:
O[C@@H]1[C@@H](OP([O-])(O)=O)[C@H](OP([O-])(O)=O)[C@@H](OP([O-])(O)=O)[C@@H](O)[C@H]1OP([O-])(OC[C@H](OC(CCCCC)=O)COC(CCCCC)=O)=O